Supplementary Information (16 pages) for:

This file contains the complete list of 275 ORFs (Tables 1-8) that were used for the DNA microarray experiments described in the article. Tables 1-4 are taken from the article while the additional ORFs that were studied are given in Tables 5-8.

Table 1. ORFs whose expression is dramatically (> 5-fold) down-regulated by S°.
Table 2. ORFs whose expression is dramatically (> 5-fold) up-regulated by S°.
Table 3. Highly-expressed S°-independent ORFs.
Table 4. Poorly-expressed S°-independent ORFs.
Table 5. ORFs whose expression is moderately (2 to 5-fold) down-regulated by S°.
Table 6. ORFs whose expression is moderately (2 to 5-fold) up-regulated by S°.
Table 7. Moderately-expressed S°-independent ORFs.
Table 8. ORFs that did not yield PCR products.
Table 1. ORFs whose expression is dramatically (＞5-fold) down-regulated by S°.

<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF Description</th>
<th>Intensity Ratio (log₂ ± SD)</th>
<th>Change in expression (-fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>577932</td>
<td>[hydrogenase expression/formation regulatory protein, hypF]</td>
<td>5.28 ± 0.89</td>
<td>39.0</td>
</tr>
<tr>
<td>1337916</td>
<td>membrane bound hydrogenase ORF 1, mbh1<sup>d</sup></td>
<td>4.14 ± 0.80</td>
<td>17.6</td>
</tr>
<tr>
<td>1251888</td>
<td>hydrogenase II gamma, hydG2</td>
<td>3.78 ± 1.47</td>
<td>13.7</td>
</tr>
<tr>
<td>1338167</td>
<td>membrane bound hydrogenase ORF 2, mbh2<sup>d</sup></td>
<td>3.77 ± 1.29</td>
<td>13.6</td>
</tr>
<tr>
<td>1339081</td>
<td>membrane bound hydrogenase ORF 5, mbh5<sup>d</sup></td>
<td>3.68 ± 1.30</td>
<td>12.8</td>
</tr>
<tr>
<td>1339520</td>
<td>membrane bound hydrogenase ORF 6, mbh6<sup>d</sup></td>
<td>3.65 ± 0.77</td>
<td>12.6</td>
</tr>
<tr>
<td>1253842</td>
<td>hydrogenase II alpha, hydL2</td>
<td>3.57 ± 1.45</td>
<td>11.8</td>
</tr>
<tr>
<td>1341399</td>
<td>membrane bound hydrogenase ORF 8 (like cooM, mbh8)<sup>d</sup></td>
<td>3.49 ± 0.79</td>
<td>11.2</td>
</tr>
<tr>
<td>1338538</td>
<td>membrane bound hydrogenase ORF 3, mbh3<sup>d</sup></td>
<td>3.31 ± 1.66</td>
<td>9.9</td>
</tr>
<tr>
<td>1252601</td>
<td>hydrogenase II delta, hydS2</td>
<td>3.25 ± 1.43</td>
<td>9.5</td>
</tr>
<tr>
<td>1342770</td>
<td>membrane bound hydrogenase ORF 11, mbh11<sup>d</sup></td>
<td>3.06 ± 1.22</td>
<td>8.3</td>
</tr>
<tr>
<td>866528</td>
<td>hydrogenase I delta, hydS1</td>
<td>2.95 ± 0.66</td>
<td>7.7</td>
</tr>
<tr>
<td>1345018</td>
<td>membrane bound hydrogenase ORF 13 (like hydC, cooK, echB, mbh13)<sup>d</sup></td>
<td>2.77 ± 0.85</td>
<td>6.8</td>
</tr>
<tr>
<td>1345434</td>
<td>membrane bound hydrogenase ORF 14 (like hyeF, echF, cooX, mbh14)<sup>d</sup></td>
<td>2.73 ± 1.40</td>
<td>6.6</td>
</tr>
<tr>
<td>1344050</td>
<td>membrane bound hydrogenase ORF 12, catalytic NiFe subunit, mbh12</td>
<td>2.68 ± 0.59</td>
<td>6.4</td>
</tr>
<tr>
<td>864857</td>
<td>hydrogenase I beta, hydB1</td>
<td>2.66 ± 1.08</td>
<td>6.3</td>
</tr>
<tr>
<td>1251025</td>
<td>hydrogenase II beta, hydB2</td>
<td>2.65 ± 1.04</td>
<td>6.3</td>
</tr>
<tr>
<td>1342256</td>
<td>membrane bound hydrogenase ORF 10, small subunit homolog, mbh10<sup>d</sup></td>
<td>2.59 ± 0.87</td>
<td>6.0</td>
</tr>
<tr>
<td>ORF</td>
<td>Description</td>
<td>Ratio</td>
<td>Log2</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>51760</td>
<td>[conserved hypothetical protein]</td>
<td>2.59 ± 1.14</td>
<td>6.0</td>
</tr>
<tr>
<td>1338785</td>
<td>membrane bound hydrogenase ORF 4, mbh4<sup>d</sup></td>
<td>2.54 ± 2.16</td>
<td>5.8</td>
</tr>
<tr>
<td>615154</td>
<td>ornithine carbamoyltransferase, argF</td>
<td>2.43 ± 0.49</td>
<td>5.4</td>
</tr>
</tbody>
</table>

^aORF designation is the end nucleotide number (http://comb5-156.umbi.umd.edu/).

^bThe ORF description is derived either from annotation by homology (given within brackets) or where there is experimental data to support the ORF assignment specifically in <i>P. furiosus</i> (given without brackets).

^cThe intensity ratio is expressed as a log₂ value so that the standard deviation can be given. For ease of comparison between ORFs, the apparent change in the expression level of a given ORF is also indicated.

^dThis work, see text for details.
Table 2. ORFs whose expression is dramatically up-regulated by S°.

<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF Description</th>
<th>Intensity Ratio (log₂ ± SD)</th>
<th>Change in expression (-fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1871822</td>
<td>[conserved hypothetical protein, sipA]</td>
<td>5.94 ± 1.43</td>
<td>61.4</td>
</tr>
<tr>
<td>1872873</td>
<td>[putative polyferredoxin, sipB]</td>
<td>4.65 ± 1.90</td>
<td>25.1</td>
</tr>
<tr>
<td>1487371</td>
<td>[tryptophan synthase, subunit beta, trpB-1]</td>
<td>2.98 ± 0.69</td>
<td>7.9</td>
</tr>
<tr>
<td>1805557</td>
<td>[conserved hypothetical protein]</td>
<td>2.93 ± 1.29</td>
<td>7.6</td>
</tr>
<tr>
<td>1008251</td>
<td>[aspartokinase II alpha subunit]</td>
<td>2.92 ± 0.89</td>
<td>7.6</td>
</tr>
<tr>
<td>1131551</td>
<td>[NADH oxidase, noxA-2]</td>
<td>2.88 ± 0.39</td>
<td>7.4</td>
</tr>
<tr>
<td>1825269</td>
<td>[thermosome, single subunit]</td>
<td>2.83 ± 1.69</td>
<td>7.1</td>
</tr>
<tr>
<td>900019</td>
<td>[acetolactate synthase]</td>
<td>2.78 ± 1.02</td>
<td>6.9</td>
</tr>
<tr>
<td>65527</td>
<td>[fibrillarin-like pre-rRNA processing protein]</td>
<td>2.70 ± 0.80</td>
<td>6.5</td>
</tr>
<tr>
<td>204761</td>
<td>[oligopeptide transport system permease protein]</td>
<td>2.68 ± 0.45</td>
<td>6.4</td>
</tr>
<tr>
<td>102519</td>
<td>[glutaredoxin-like protein]</td>
<td>2.61 ± 1.72</td>
<td>6.1</td>
</tr>
<tr>
<td>1352206</td>
<td>[NADH dehydrogenase subunit]</td>
<td>2.59 ± 0.59</td>
<td>6.0</td>
</tr>
</tbody>
</table>

aSee Table 1 for details.
bSee text for details.
Table 3. Highly-expresseda S\textdegree-independent ORFs.

<table>
<thead>
<tr>
<th>ORFb</th>
<th>ORF descriptionb</th>
</tr>
</thead>
<tbody>
<tr>
<td>49183</td>
<td>phosphoenolpyruvate synthetase, \textit{ppsA}</td>
</tr>
<tr>
<td>143318</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>232621</td>
<td>enolase (2-phosphoglycerate dehydratase)</td>
</tr>
<tr>
<td>236793</td>
<td>[hexulose-6-phosphate synthase]</td>
</tr>
<tr>
<td>358419</td>
<td>aldehyde ferredoxin oxidoreductase, \textit{aor}</td>
</tr>
<tr>
<td>478142</td>
<td>glyceraldehyde-3-phosphate ferredoxin oxidoreductase, \textit{gor}</td>
</tr>
<tr>
<td>683389</td>
<td>[methylmalonyl-CoA decarboxylase, subunit alpha, \textit{mmdA}]</td>
</tr>
<tr>
<td>720985</td>
<td>[alkyl hydroperoxide reductase subunit C]</td>
</tr>
<tr>
<td>925374</td>
<td>pyruvate ferredoxin oxidoreductase beta, \textit{porB}</td>
</tr>
<tr>
<td>926380</td>
<td>pyruvate ferredoxin oxidoreductase alpha, \textit{porA}</td>
</tr>
<tr>
<td>927947</td>
<td>2-ketoisovalerate ferredoxin oxidoreductase beta, \textit{vorB}</td>
</tr>
<tr>
<td>928888</td>
<td>2-ketoisovalerate ferredoxin oxidoreductase subunit alpha, \textit{vorA}</td>
</tr>
<tr>
<td>1145403</td>
<td>formaldehyde ferredoxin oxidoreductase, \textit{for}</td>
</tr>
<tr>
<td>1208774</td>
<td>[LSU ribosomal protein L10]</td>
</tr>
<tr>
<td>1210188</td>
<td>superoxide reductase, \textit{sor}</td>
</tr>
<tr>
<td>1210814</td>
<td>[rubrerythrin]</td>
</tr>
<tr>
<td>1425928</td>
<td>[ethylene-inducible protein homolog]</td>
</tr>
<tr>
<td>1493675</td>
<td>glutamate dehydrogenase, \textit{gdh}</td>
</tr>
<tr>
<td>1597902</td>
<td>intracellular protease, \textit{pfpI}</td>
</tr>
<tr>
<td>1619038</td>
<td>[putative trehalose synthase]</td>
</tr>
</tbody>
</table>

aORFs displaying average fluorescent intensities >20,000, see Fig. 1B.
bSee Table 1 for details
<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53135</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>349245</td>
<td>[flagella-related protein D, putative]</td>
</tr>
<tr>
<td>350457</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>350944</td>
<td>[flagellin B2 precursor]</td>
</tr>
<tr>
<td>351748</td>
<td>[flagellin B2 precursor]</td>
</tr>
<tr>
<td>373060</td>
<td>[ABC transporter, OppBC family]</td>
</tr>
<tr>
<td>379218</td>
<td>[beta-galactosidase precursor]</td>
</tr>
<tr>
<td>488057</td>
<td>[DNA mismatch repair protein, MutS]</td>
</tr>
<tr>
<td>562899</td>
<td>[molybdopterin converting factor, subunit 1, moaD]</td>
</tr>
<tr>
<td>575520</td>
<td>[NADH oxidase, noxA-4/nitrite reductase]</td>
</tr>
<tr>
<td>637268</td>
<td>[molybdopterin-guanine dinucleotide biosynthesis protein, mobA]</td>
</tr>
<tr>
<td>637303</td>
<td>[hydrogenase maturation protease, hycI]</td>
</tr>
<tr>
<td>722839</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>738742</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>743892</td>
<td>[putative proline depeptidase]</td>
</tr>
<tr>
<td>834030</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>838710</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>880926</td>
<td>[ferric enterobactin transport ATP-binding protein homolog]</td>
</tr>
<tr>
<td>881669</td>
<td>[iron (III) ABC transporter, permease protein, hemU-1]</td>
</tr>
<tr>
<td>882732</td>
<td>[iron (III) ABC transporter ATP-binding protein, hemV-2]</td>
</tr>
<tr>
<td>962748</td>
<td>[alkaline phosphatase IV precursor]</td>
</tr>
<tr>
<td>1012695</td>
<td>[phosphoglycerate kinase]</td>
</tr>
<tr>
<td>1138558</td>
<td>[transcriptional regulator (FurR family)]</td>
</tr>
<tr>
<td>1158892</td>
<td>[dissimilatory sulfate adenylyltransferase]</td>
</tr>
<tr>
<td>1165967</td>
<td>[4-aminobutyrate aminotransferase]</td>
</tr>
<tr>
<td>1197174</td>
<td>[putative nucleolar protein II, Nol1-Nop2-sun family]</td>
</tr>
<tr>
<td>1208389</td>
<td>[conserved hypothetical protein]</td>
</tr>
</tbody>
</table>
1417217 [sugar-binding transport ATP-binding protein]
1647980 2-keto acid:ferredoxin oxidoreductase subunit alpha]
1668574 [sarcosine oxidase, alpha subunit, SoxA]
1669077 [putative polyferrodoxin, muhB]
1711295 [molybdenum cofactor biosynthesis protein, moaC]
1873595 [nitrogen reductase, N-terminus]
1873914 [ferrodoxin-family protein]

*ORFs displaying average fluorescent intensities below 2,000, see Fig. 1B.
See Table 1 for details.
Table 5. ORFs whose expression is moderately (2 to 5-fold) down-regulated by S°.

<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF Description</th>
<th>Intensity Ratio (log₂ ± SD)</th>
<th>Change in expression (-fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>224077</td>
<td>[arginosuccinate synthetase, argG]</td>
<td>-1.63 ± 1.51</td>
<td>3.10</td>
</tr>
<tr>
<td>521928</td>
<td>[probable iron (FeIII) ABC transporter]</td>
<td>-1.47 ± 0.47</td>
<td>2.78</td>
</tr>
<tr>
<td>566869</td>
<td>[hydrogenase expression/formation protein, hypC]</td>
<td>-1.17 ± 0.89</td>
<td>2.24</td>
</tr>
<tr>
<td>567973</td>
<td>[hydrogenase expression/formation protein, hypD]</td>
<td>-1.32 ± 0.50</td>
<td>2.50</td>
</tr>
<tr>
<td>636092</td>
<td>[hydrogenase expression/formation protein, hypA]</td>
<td>-1.37 ± 0.88</td>
<td>2.58</td>
</tr>
<tr>
<td>685707</td>
<td>carbamate kinase-like carbamoylphosphate synthetase, cpkA</td>
<td>-1.72 ± 1.00</td>
<td>3.29</td>
</tr>
<tr>
<td>700151</td>
<td>not annotated</td>
<td>-2.02 ± 1.29</td>
<td>4.05</td>
</tr>
<tr>
<td>702081</td>
<td>[prismane protein homolog]</td>
<td>-1.45 ± 1.33</td>
<td>2.74</td>
</tr>
<tr>
<td>714814</td>
<td>[conserved hypothetical protein]</td>
<td>-2.11 ± 0.83</td>
<td>4.32</td>
</tr>
<tr>
<td>739367</td>
<td>[probable ferritin, rsgA]</td>
<td>-1.69 ± 0.39</td>
<td>3.22</td>
</tr>
<tr>
<td>825121</td>
<td>[iron-dependent repressor]</td>
<td>-1.65 ± 1.24</td>
<td>3.13</td>
</tr>
<tr>
<td>865732</td>
<td>hydrogenase I, gamma, hydG1</td>
<td>-2.28 ± 3.91</td>
<td>4.87</td>
</tr>
<tr>
<td>867811</td>
<td>hydrogenase I, alpha, hydL1</td>
<td>-1.17 ± 1.06</td>
<td>2.25</td>
</tr>
<tr>
<td>1092336</td>
<td>[conserved hypothetical protein]</td>
<td>-1.24 ± 0.98</td>
<td>2.36</td>
</tr>
<tr>
<td>1148005</td>
<td>beta-mannosidase, BmnA</td>
<td>-1.16 ± 0.80</td>
<td>2.23</td>
</tr>
<tr>
<td>1341748</td>
<td>membrane bound hydrogenase ORF 9, mbh9δ</td>
<td>-2.07 ± 0.72</td>
<td>4.20</td>
</tr>
<tr>
<td>1418206</td>
<td>[ABC transporter integral membrane protein]</td>
<td>-1.20 ± 0.97</td>
<td>2.30</td>
</tr>
<tr>
<td>1591790</td>
<td>[carbamoyl-phosphate synthase, small subunit, carA]</td>
<td>-1.49 ± 1.55</td>
<td>2.80</td>
</tr>
<tr>
<td>1626630</td>
<td>[probable sulfate transport system permease protein ABC transporter]</td>
<td>-1.33 ± 0.41</td>
<td>2.51</td>
</tr>
<tr>
<td>1689568</td>
<td>[archaeal histone A1, hpyA1-2]</td>
<td>-1.47 ± 1.02</td>
<td>2.77</td>
</tr>
<tr>
<td>1760272</td>
<td>ferredoxin</td>
<td>-2.00 ± 1.23</td>
<td>4.00</td>
</tr>
</tbody>
</table>

see Table 1 for details
<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF description</th>
<th>Intensity Ratio (log₂ ± SD)</th>
<th>Change in expression (-fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9230</td>
<td>thiamine biosynthesis protein, thiF</td>
<td>1.02 ± 0.58</td>
<td>2.02</td>
</tr>
<tr>
<td>66216</td>
<td>[Nop58/Nop56 related protein]</td>
<td>2.02 ± 0.75</td>
<td>4.05</td>
</tr>
<tr>
<td>80317</td>
<td>[alcohol dehydrogenase, short chain]</td>
<td>1.43 ± 1.59</td>
<td>2.70</td>
</tr>
<tr>
<td>81500</td>
<td>[alcohol dehydrogenase]</td>
<td>1.69 ± 1.81</td>
<td>3.22</td>
</tr>
<tr>
<td>83139</td>
<td>not annotated</td>
<td>1.00 ± 1.09</td>
<td>2.00</td>
</tr>
<tr>
<td>97550</td>
<td>[molybdenum cofactor biosynthesis protein, moaA]</td>
<td>2.16 ± 0.84</td>
<td>4.46</td>
</tr>
<tr>
<td>105386</td>
<td>[bacteriochlorophyll synthase, 43 kDa subunit, chlP-I]</td>
<td>2.13 ± 0.52</td>
<td>4.38</td>
</tr>
<tr>
<td>120590</td>
<td>[probable multiple sugar transport protein]</td>
<td>1.05 ± 0.74</td>
<td>2.07</td>
</tr>
<tr>
<td>126676</td>
<td>[probable aspartate aminotransferase]</td>
<td>1.27 ± 0.26</td>
<td>2.41</td>
</tr>
<tr>
<td>221932</td>
<td>[glutamate synthase (NADPH) subunit alpha]</td>
<td>1.31 ± 0.69</td>
<td>2.49</td>
</tr>
<tr>
<td>228606</td>
<td>DNA-directed DNA polymerase</td>
<td>1.35 ± 0.40</td>
<td>2.55</td>
</tr>
<tr>
<td>245558</td>
<td>[conserved hypothetical protein]</td>
<td>1.52 ± 1.24</td>
<td>2.87</td>
</tr>
<tr>
<td>334012</td>
<td>[similar to acylaminoacyl-peptidase]</td>
<td>2.08 ± 0.94</td>
<td>4.22</td>
</tr>
<tr>
<td>471039</td>
<td>[carboxypeptidase 1]</td>
<td>1.84 ± 0.63</td>
<td>3.58</td>
</tr>
<tr>
<td>517476</td>
<td>[reverse gyrase, rgy]</td>
<td>1.37 ± 0.67</td>
<td>2.58</td>
</tr>
<tr>
<td>518483</td>
<td>[conserved hypothetical protein]</td>
<td>1.36 ± 1.06</td>
<td>2.56</td>
</tr>
<tr>
<td>636814</td>
<td>[nucleotide-binding protein, Mrp/Nbp35 family]</td>
<td>1.51 ± 0.61</td>
<td>2.85</td>
</tr>
<tr>
<td>747589</td>
<td>[thioredoxin peroxidase]</td>
<td>1.18 ± 1.94</td>
<td>2.27</td>
</tr>
<tr>
<td>757388</td>
<td>[NDP-sugar dehydrogenase]</td>
<td>1.31 ± 0.58</td>
<td>2.49</td>
</tr>
<tr>
<td>863522</td>
<td>[leucyl-tRNA synthetase]</td>
<td>1.51 ± 0.56</td>
<td>2.85</td>
</tr>
<tr>
<td>903832</td>
<td>[3-isopropylmalate dehydratase large subunit, leuC]</td>
<td>2.05 ± 1.34</td>
<td>4.15</td>
</tr>
<tr>
<td>930439</td>
<td>pyruvate ferredoxin oxidoreductase, gamma,</td>
<td>1.29 ± 0.60</td>
<td>2.45</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene Name</td>
<td>Fold Change</td>
<td>Expression</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>973527</td>
<td>conserved hypothetical protein</td>
<td>1.30 ± 0.56</td>
<td>2.46</td>
</tr>
<tr>
<td>977368</td>
<td>transcriptional regulatory protein, AsnC family</td>
<td>1.32 ± 1.63</td>
<td>2.49</td>
</tr>
<tr>
<td>1050569</td>
<td>bifunctional short chain isoprenyl diphosphate synthase</td>
<td>1.03 ± 0.27</td>
<td>2.04</td>
</tr>
<tr>
<td>1175771</td>
<td>dehydrogenase subunit alpha</td>
<td>1.12 ± 0.71</td>
<td>2.17</td>
</tr>
<tr>
<td>1187250</td>
<td>aspartate transaminase</td>
<td>1.52 ± 1.07</td>
<td>2.87</td>
</tr>
<tr>
<td>1262501</td>
<td>XAA-PRO dipeptidase (proline dipeptidase)</td>
<td>1.21 ± 0.72</td>
<td>2.31</td>
</tr>
<tr>
<td>1285543</td>
<td>LSU ribosomal protein L7AE, rpl7AE</td>
<td>1.03 ± 0.55</td>
<td>2.04</td>
</tr>
<tr>
<td>1325941</td>
<td>dipeptide transport system permease protein, dppB</td>
<td>1.92 ± 0.70</td>
<td>3.79</td>
</tr>
<tr>
<td>1334722</td>
<td>hypothetical 4-aminobutyrate aminotransferase</td>
<td>1.41 ± 1.29</td>
<td>2.65</td>
</tr>
<tr>
<td>1336194</td>
<td>thioredoxin reductase, trxB</td>
<td>1.30 ± 0.57</td>
<td>2.46</td>
</tr>
<tr>
<td>1350388</td>
<td>NADH dehydrogenase subunit</td>
<td>2.15 ± 0.90</td>
<td>4.43</td>
</tr>
<tr>
<td>1359534</td>
<td>NADH dehydrogenase subunit</td>
<td>1.72 ± 0.59</td>
<td>3.30</td>
</tr>
<tr>
<td>1368790</td>
<td>L-asparaginase (L-asparagine amidohydrolase)</td>
<td>1.11 ± 1.32</td>
<td>2.15</td>
</tr>
<tr>
<td>1383440</td>
<td>putative oxidoreductase Fe-S subunit</td>
<td>1.12 ± 1.86</td>
<td>2.17</td>
</tr>
<tr>
<td>1385199</td>
<td>formaldehyde:ferredoxin oxidoreductase, wor5</td>
<td>1.66 ± 0.38</td>
<td>3.16</td>
</tr>
<tr>
<td>1397077</td>
<td>putative transaminase</td>
<td>1.65 ± 0.60</td>
<td>3.14</td>
</tr>
<tr>
<td>1430634</td>
<td>NADH oxidase, noxA-3</td>
<td>2.00 ± 0.64</td>
<td>4.00</td>
</tr>
<tr>
<td>1432910</td>
<td>alpha-glucan phosphorylase</td>
<td>1.29 ± 0.56</td>
<td>2.44</td>
</tr>
<tr>
<td>1440640</td>
<td>conserved hypothetical protein</td>
<td>2.15 ± 0.55</td>
<td>4.45</td>
</tr>
<tr>
<td>1459639</td>
<td>DNA directed RNA polymerase subunit B</td>
<td>1.31 ± 0.44</td>
<td>2.48</td>
</tr>
<tr>
<td>1581651</td>
<td>chorismate synthase, aroC</td>
<td>1.14 ± 2.21</td>
<td>2.21</td>
</tr>
<tr>
<td>1590580</td>
<td>hypothetical protein</td>
<td>1.68 ± 1.00</td>
<td>3.20</td>
</tr>
<tr>
<td>1594946</td>
<td>pyrroline-5-carboxylate reductase, proC</td>
<td>1.69 ± 0.94</td>
<td>3.22</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Ratio</td>
<td>Fold Change</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>1609923</td>
<td>[transcriptional regulatory protein, AsnC family]</td>
<td>1.01 ± 1.64</td>
<td>2.01</td>
</tr>
<tr>
<td>1632493</td>
<td>[possible fumarate hydratase (fumarase) alpha subunit]</td>
<td>1.18 ± 0.79</td>
<td>2.26</td>
</tr>
<tr>
<td>1650532</td>
<td>[iron (III) ABC transporter, ATP-binding protein, hemV-2]</td>
<td>1.81 ± 1.15</td>
<td>3.50</td>
</tr>
<tr>
<td>1661667</td>
<td>[conserved hypothetical protein]</td>
<td>1.37 ± 0.41</td>
<td>2.59</td>
</tr>
<tr>
<td>1692502</td>
<td>[conserved hypothetical protein]</td>
<td>1.59 ± 0.32</td>
<td>3.01</td>
</tr>
<tr>
<td>1709262</td>
<td>[glutamate synthase small subunit]</td>
<td>1.73 ± 0.67</td>
<td>3.33</td>
</tr>
<tr>
<td>1729232</td>
<td>[glyceraldehyde-3-phosphate dehydrogenase]</td>
<td>1.56 ± 0.57</td>
<td>2.94</td>
</tr>
<tr>
<td>1736497</td>
<td>[small heat shock protein (class I)]</td>
<td>2.01 ± 1.05</td>
<td>4.02</td>
</tr>
<tr>
<td>1776415</td>
<td>[recombinase, radA]</td>
<td>1.71 ± 0.75</td>
<td>3.26</td>
</tr>
<tr>
<td>1802989</td>
<td>[iron-sulfur protein]</td>
<td>2.00 ± 0.72</td>
<td>3.99</td>
</tr>
<tr>
<td>1811080</td>
<td>[aldose reductase]</td>
<td>1.97 ± 0.69</td>
<td>3.92</td>
</tr>
<tr>
<td>1812948</td>
<td>[tungsten-containing formaldehyde feredoxin oxidoreductase, wor4]</td>
<td>1.49 ± 0.64</td>
<td>2.81</td>
</tr>
<tr>
<td>1829226</td>
<td>[quinolinate synthetase, nadA]</td>
<td>2.03 ± 0.50</td>
<td>4.09</td>
</tr>
<tr>
<td>1830606</td>
<td>[nicotinate-nucleotide pyrophosphorylase, nadC]</td>
<td>1.68 ± 0.44</td>
<td>3.21</td>
</tr>
<tr>
<td>1849443</td>
<td>[glycine dehydrogenase (decarboxylating) subunit 2]</td>
<td>1.11 ± 0.69</td>
<td>2.16</td>
</tr>
<tr>
<td>1862794</td>
<td>[extragenic suppressor, suhB]</td>
<td>1.52 ± 0.63</td>
<td>2.87</td>
</tr>
<tr>
<td>1865094</td>
<td>[ATP-dependent RNA helicase, putative]</td>
<td>1.37 ± 1.31</td>
<td>2.59</td>
</tr>
<tr>
<td>1873389</td>
<td>[nitrogen reductase (C-terminus of 1873592)]</td>
<td>1.95 ± 1.65</td>
<td>3.85</td>
</tr>
</tbody>
</table>

aSee Table 1 for details.
<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24502</td>
<td>[recombinase called RadB]</td>
</tr>
<tr>
<td>55124</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>78019</td>
<td>beta-glucosidase, celB</td>
</tr>
<tr>
<td>84211</td>
<td>[cyclic 2,3-diphosphoglycerate-synthetase]</td>
</tr>
<tr>
<td>88335</td>
<td>[conserved hypothetical membrane protein]</td>
</tr>
<tr>
<td>107582</td>
<td>[molybdopterin converting factor (subunit 2)]</td>
</tr>
<tr>
<td>132382</td>
<td>[spermidine synthase, speE]</td>
</tr>
<tr>
<td>149451</td>
<td>[2-keto acid:ferredoxin oxidoreductase subunit gamma]</td>
</tr>
<tr>
<td>156299</td>
<td>[putative 3-isopropylmalate dehydratase large subunit]</td>
</tr>
<tr>
<td>157236</td>
<td>[putative alcohol dehydrogenase/reductase]</td>
</tr>
<tr>
<td>175761</td>
<td>[nifS protein]</td>
</tr>
<tr>
<td>179810</td>
<td>[putative nucleolar protein III (Nol1-Nop2-sun family)]</td>
</tr>
<tr>
<td>183489</td>
<td>[protein-export membrane protein, SecF]</td>
</tr>
<tr>
<td>186105</td>
<td>[ATP synthase subunit B]</td>
</tr>
<tr>
<td>188098</td>
<td>[ATPase subunit I]</td>
</tr>
<tr>
<td>214120</td>
<td>[aconitate hydratase (aconitase)]</td>
</tr>
<tr>
<td>245544</td>
<td>[conserved hypothetical protein]</td>
</tr>
<tr>
<td>304310</td>
<td>[phosphoenolpyruvate carboxykinase (GTP)]</td>
</tr>
<tr>
<td>327695</td>
<td>ADP-dependent glucokinase, glkA</td>
</tr>
<tr>
<td>356987</td>
<td>[tungsten-containing AOR cofactor modifying protein]</td>
</tr>
<tr>
<td>358122</td>
<td>[molybdopterin converting cofactor, subunit 1 (moaD)]</td>
</tr>
<tr>
<td>368506</td>
<td>[beta-galactosidase]</td>
</tr>
<tr>
<td>387554</td>
<td>[molybdenum cofactor biosynthesis protein (moaB)]</td>
</tr>
<tr>
<td>438413</td>
<td>[phosphoribosylglycinamide formyltransferase 2]</td>
</tr>
<tr>
<td>459493</td>
<td>[beta-glucosidase]</td>
</tr>
<tr>
<td>465719</td>
<td>[glutamine synthetase I]</td>
</tr>
<tr>
<td>477397</td>
<td>[hydrolase rel. to 2-haloalkanoic acid dehalogenase]</td>
</tr>
</tbody>
</table>

Table 7. Moderately-expressed S°-independent ORFs
13

532443 [probable glutamate aminotransferase]
540820 [aspartate transaminase]
549216 [conserved hypothetical protein]
551149 indolepyruvate ferredoxin oxidoreductase alpha, iorA
551790 indolepyruvate ferredoxin oxidoreductase beta, iorB
561253 methionine aminopeptidase, MAP, Peptidase M
562615 [molybdenum cofactor biosynthesis protein, moeA-1]
619035 [IAA-amino acid hydrolase homolog 1 precursor]
619484 [aspartate carbamoyltransferase, catalytic subunit, pyrB]
621560 [conserved hypothetical protein]
626147 [hydrogenase expression/formation protein, hypE]
631178 [alcohol dehydrogenase]
674979 [putative nucleolar protein IV (NoI1-NoP2-sun family)]
699847 [conserved hypothetical protein, possible thioredoxin/glutaredoxin]
748043 [2-keto acid:ferredoxin oxidoreductase subunit beta]
748906 [2-keto acid:ferredoxin oxidoreductase subunit alpha]
750669 [non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase]
796206 [conserved hypothetical protein]
817300 [2-keto acid:ferredoxin oxidoreductase subunit alpha]
927581 pyruvate ferredoxin oxidoreductase, delta, porD
930085 2-ketovalerate ferredoxin oxidoreductase, delta, vorD
981072 [malate oxidoreductase (malic enzyme)]
988026 [conserved hypothetical protein]
989258 [alkyl hydroperoxide reductase]
991757 [conserved hypothetical protein]
998565 [adenylate kinase, adk]
1019818 [putative aminotransferase]
1020852 [SSU ribosomal protein S8E]
1035285 [conserved hypothetical protein]
1093579 [conserved hypothetical protein]
1104585 [ribulose-1,5-bisphosphate carboxylase (RUBISCO)]
rubredoxin
ferredoxin NADPH oxidoreductase, beta
[aminomethyl transferase]
[conserved hypothetical protein]
[sn-glycerol-1-phosphate dehydrogenase]
[endo/exonuclease, fen-1]
[glutaredoxin/thioredoxin-like protein]
[formate dehydrogenase alpha chain]
[transcriptional regulatory protein, AsnC family]
[ferripyochelin binding protein]
leucine responce protein, lrpA
[imidazoleglycerol-phosphate synthase, cyclase subunit, hisF]
[acetylornithine aminotransferase, argD-1]
[tryptophane synthase, subunit beta, trpB-2]
[carbamoyl-phosphate synthase large chain, carB]
[transcriptional regulatory protein, AsnC family]
[probable sugar-binding transport ATP-binding protein]
[possible fumarate hydratase (fumarase) beta subunit]
[2-keto acid:ferredoxin oxidoreductase subunit alpha]
[molybdenum cofactor biosynthesis protein, moeA-2]
ADP-dependent phosphofructokinase, pfk
[centromere binding protein homolog/pseudouridine synthase]
[adenylate kinase (ATP-AMP transphosphorylase)]
1671649 [preprotein translocase, secY]
1693216 [conserved hypothetical protein]
1716363 [conserved hypothetical protein]
1751962 [DNA repair helicase putative]
1782299 [putative sugar transport ATP-hydrolyzing]
1783837 amylopullulanase
1808382 [agmatinase, speB]
1813313 [4-hydroxybenzoate octaprenyltransferase, putative]
1819997 [probable multiple sugar-binding transport ATP-binding protein]
1828270 [L-aspartate oxidase (quinolinate synthetase)]
1889236 [L-asparaginase]

^ORFs displaying average fluorescent intensities between 2,000 and 20,000, see Fig. 1B.
See Table 1 for details.
Table 8. ORFs that did not yield PCR products.

<table>
<thead>
<tr>
<th>ORF</th>
<th>ORF description</th>
</tr>
</thead>
<tbody>
<tr>
<td>348225</td>
<td>[putative flagella-related protein G]</td>
</tr>
<tr>
<td>348707</td>
<td>[putative flagella-related protein]</td>
</tr>
<tr>
<td>1351020</td>
<td>[NADH dehydrogenase subunit]</td>
</tr>
<tr>
<td>1862027</td>
<td>[conserved hypothetical protein]</td>
</tr>
</tbody>
</table>

aSee Table 1 for details.